MECÂNICA GRACELI GENERALIZADA dimensional - relativista indeterminada


dentro da sua mecânica e com  o operador de GRACELI   ¨*  ¨se tem a indeterminalidade quântica generalizada de Graceli



MECÂNICA GRACELI GENERALIZADA dimensional - relativista indeterminada




 

  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.









ψ     [ / ]   /[,]

  ) [,] / [    ]     .


ψ     [ / ]   /[,]

  ) [,] / [    ]     .




ψ        / [ [ [,]  ] ]    .




   / ]]   ) [[ ][,]

ψ] ]  .



 ψ   / [ [ ] [,,]

 ] ψ] /    .





ψ    ) [[ ][,]

ψ] .   . 






ψ         [ ] [ ][,] ]   .,



 ψ        [ [ ]]]

 
ψ]]   .




ψ       / [ 

[ ] [,,]] ]    .






ψ   / [ [ ]]

ψ] /     .




*  [ ]]

ψ[
,.] / ] ]] .








    [[ ]]/

] [
,]ψ]] .





ψ [[ ]]

 ].],]ψ]/ ]  .










  / [ [ ]]

,.]ψ ]  .




ψ      [  [ ] [,]

  ψ ] / ]    .






ψ     []

] /      [[ ]]     .






ψ  [[[ ]]  ) [

ψ [,]










ψ     [ [[ ]]

  ) [,]] /  ψ     .



   [[ ]] /   ) / [,].

, ] / ψ   .

magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]


Para postular esta propriedade da matéria, De Broglie se baseou na explicação do efeito fotoelétrico, que pouco antes havia sido apresentada por Albert Einstein sugerindo a natureza corpuscular da luz. Para Einstein, a energia transportada pelas ondas luminosas estava quantizada, distribuída em pequenos pacotes de energia ou quanta de luz, que mais tarde seriam denominados fótons, e cuja energia dependia da frequência da luz através da relação , onde  é a frequência da onda luminosa e  a constante de Planck. Albert Einstein propunha desta forma que, em determinados processos, as ondas eletromagnéticas se comportam como corpúsculos. De Broglie se perguntou se tal não poderia se dar de maneira inversa, ou seja, que uma partícula material (um corpúsculo) pudesse mostrar o mesmo comportamento que uma onda.

O físico francês relacionou o comprimento de ondaλ (lambda) com a quantidade de movimento da partícula, mediante a fórmula:

,

onde λ é o comprimento da onda associada à partícula de massa m que se move a uma velocidade v, e h é a constante de Planck. O produto é também o módulo do vetor , ou quantidade de momento da partícula. Olhando a equação, percebe-se que à medida que a massa do corpo ou sua velocidade aumenta, seu comprimento de onda diminui.




oscilador harmônico quântico é o análogo quântico do oscilador harmônico clássico. É um dos sistemas modelo mais importante em mecânica quântica, já que qualquer potencial pode ser aproximado por um potencial harmônico nas proximidades do ponto de equilíbrio estável (mínimo). Além disso, é um dos sistemas quânticos que admite uma solução analítica precisa.

Oscilador harmônico monodimensional

[editar | editar código fonte]

Hamiltoniano, energia e autofunções

[editar | editar código fonte]
Funções de onda para os primeiros seis autoestados, . O eixo horizontal mostra a posição y em unidades (h/2πmω)1/2. Os gráficos não estão normalizados.
Densidades de probabilidade dos primeiros autoestados (dimensão vertical, com os de menor energia na parte inferior) para as diferentes localizações espaciais (dimensão horizontal)

No problema do oscilador harmônico monodimensional, uma partícula de massa  está submetida a um potencial quadrático . Em mecânica clássica  se denomina constante de força ou constante elástica, e depende da massa  da partícula e da frequência angular .

hamiltoniano quântico da partícula é:[1]

onde  é o operador posição e  é o operador momento . O primeiro termo representa a energia cinética da partícula, enquanto que o segundo representa sua energia potencial. Com o fim de obter os estados estacionários (ou seja, as autofunções e os autovalores do hamiltoniano ou valores dos níveis de energia permitidos), é necessário resolver a equação de Schrödinger independente do tempo

.

Pode-se resolver a equação diferencial na representação de coordenadas utilizando o método de desenvolver a solução em série de potências. Se obtém assim que a família de soluções é[2]

onde  representa o número quântico vibracional. As primeiras seis soluções () se mostram na figura da direita. As funções  são os polinômios de Hermite:

Não se devem confundir com o hamiltoniano, que às vezes se denota por H (ainda que é preferível utilizar a notação  para evitar confusões). Os níveis de energia são

.

Este espectro de energia destaca por três razões. A primeira é que as energias estão "quantizadas" e somente podem tomar valores discretos, em frações semi-inteiras , ... de . Este resultado é característico dos sistemas quânticos em que a partícula está confinada.[2]

A segunda é que os níveis de energia estão igualmente espaçados, ao contrário que no modelo de Bohr ou a partícula em uma caixa.

A última razão é que a energia mais baixa não coincide com o mínimo do potencial (zero neste caso). Assim, a energia mais baixa possível é , e se denomina "energia do estado fundamental" ou energia do ponto zero.

A energia do ponto zero é necessária para cumprir com o princípio da incerteza de Heisenberg, já que se a energia do estado fundamental for zero, tanto a energia potencial quanto a energia cinética da partícula seriam zero. Energia potencial zero implica que a partícula está localizada exatamente na origem (com △x = 0) e energia cinética zero implica que o momento da partícula é zero (△p = 0), ferindo assim o principio da incerteza, pois a incerteza na posição e no momento não podem ser ambos zero.[3]

Convém destacar que a densidade de probabilidade do estado fundamental se concentra na origem. Ou seja, a partícula passa mais tempo no mínimo do potencial, como seria de esperar em um estado de pouca energia. A medida que a energia aumenta, a densidade de probabilidade se concentra nos "pontos de retorno clássicos", onde a energia dos estados coincide com a energia potencial. Este resultado é consistente com o do oscilador harmônico clássico, para o qual a partícula passa mais tempo (e portanto é onde seria mais provável encontrá-la) nos pontos de retorno. Se satisfaz assim o princípio da correspondência.

Aplicação: moléculas diatômicas

Para estudar o movimento de vibração dos núcleos pode-se utilizar, em uma primeira aproximação, o modelo do oscilador harmônico. Se consideramos pequenas vibrações em torno do ponto de equilíbrio, podemos desenvolver o potencial eletrônico em série de potências. Assim, no caso de pequenas oscilações o termo que domina é o quadrático, ou seja, um potencial de tipo harmônico. Portanto, em moléculas diatômicas, a frequência fundamental de vibração será dada por[4]:

que se relaciona com a frequência angular mediante  e depende da massa reduzida  da molécula diatômica.


Comentários

Postagens mais visitadas deste blog